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ABSTRACT

A novel wavelet-based sparse signal representation technique is used to separate the main and
tail rotor blade components of a helicopter from the composite radar returns. The received
signal consists of returns from the rotating main and tail rotor blades, the helicopter body,
possible land or sea clutter, and other residual components, which may all overlap in time
and frequency; and therefore conventional time and frequency separation techniques cannot
be applied. A sparse signal representation technique is now proposed for this problem with the
tunable Q wavelet transform used as the dictionary. The proposed algorithm is demonstrated
using both simulated and real radar data (X and Ku-band), and is capable of extracting the
components of interest successfully.
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Signal Separation Of Helicopter Radar Returns

Using Wavelet-Based Sparse Signal Optimisation

Executive Summary
The radar return from a helicopter target in flight is a complex multi-component signal com-
prising of returns from the main body, the main and tail rotor hubs and blades. Temporal and
Doppler characteristics of these components are quite distinguishable providing a potential
basis for automatic target recognition and classification. For example, the blade returns are
highly non-stationary and have a broad Doppler spectrum in periodic short time intervals.
On the other hand, the body return is relatively stationary with a narrow Doppler line. Sep-
arating composite radar return into individual components provides useful information for
number of Defence applications. In this report, we propose robust algorithms for separating
main rotor blade component, as well as that of the tail rotor blade, from the other components
using state-of-the-art wavelet transforms and sparse signal representation techniques.

Wavelet transforms have been used extensively to transform a signal into the time-scale do-
main, simultaneously representing time and frequency information. Among the recently de-
veloped classes of discrete wavelets, the tunable Q wavelet transform (TQWT) offers great
flexibility to represent the signal components of interest, and can also be efficiently imple-
mented. In this work, the TQWT is used to represent the main and tail rotor blade returns,
which can then be extracted by sparse signal optimisation. A variation of basis pursuit denois-
ing (BPD), an l1 norm based sparse optimisation technique, is used to compute the TQWT
coefficients. Two algorithms are presented in the report to separately extract main rotor blade
returns and tail rotor blade returns from the composite signal.

The algorithms are demonstrated on both simulated and real helicopter data. The experimen-
tal data at X-band (9.5 GHz) and Ku-band (16.8 GHz) were collected by the DST Wandana
II radar of a Squirrel AS350BA helicopter at various aspect angles. The algorithms are shown
to be capable of extracting the main rotor blade signal as well as the tail rotor blade signal
almost completely, leaving only the hub and body components in the residual signal. Also,
no artifacts in the extracted signals were observed despite the presence of the dominant body
component and noise. Comparisons of the original and extracted signals in time and frequency
domains show an excellent match.

The proposed method is also tested in a typical sea clutter environment. Simulated sea
clutter was added to X-band helicopter data at different signal-to-clutter ratios (SCR), and
the performance of the methods is verified. Even at a total SCR of −11.7 dB (the main blades
SCR is −25 dB), the main rotor blade returns were successfully extracted from other signal
components and clutter.

Future work is required to test the performance of the proposed methods when applied to a
highly maneuvering helicopter. Also, the performance of the algorithms at other operating
frequencies such as L or S-band is still to be evaluated using real data. More work on automatic
tuning of the TQWT filter is also warranted. The proposed methods are highly flexible, and
can be adapted to analyse radar returns from other rotating blade structures such as wind
turbines.
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1 Introduction

Radar returns from a helicopter target in flight is a complex signal composed of multiple
signal components due to rotating and vibrating parts on the helicopter body including the
main and tail rotor blades, rotor hubs, body of the helicopter, and interference sources such
as sea clutter. Some components are relatively stationary such as returns from the helicopter
body, whereas others are highly non-stationary such as the returns from the rotating blades,
where the high and different angular velocities of the main and tail rotor blades induce wide
Doppler frequency spreads in the return signal, and are observable as short periodic ‘blade
flashes’ in the time domain. These blade flashes belong to the class of micro-Doppler sig-
nals [1, 2, 3], which cannot be conveniently processed by standard range-Doppler processing
techniques.

In this report, we exploit sparse signal representation techniques for the problem of signal
separation for helicopter radar returns. The sparsity characteristics of such different signal
components in the wavelet or time-scale domain can be used to differentiate and extract the
signal components of interest. The extracted components can then be used for target imaging
and classification, which is currently outside the scope of this work.

In recent years, signal processing techniques based on joint time-frequency distributions have
been widely used to analyse radar micro-Doppler signatures, such as in the pioneering work by
Chen et al. [1, 4, 2]. These authors developed mathematical models for micro-Doppler motion
of vibrating, rotating, tumbling, and coning point scatterers and effects of radar platform
vibration on micro-Doppler modulation. They used linear time-frequency transforms such as
short-time Fourier transform (STFT), Cohen’s class of bilinear transforms such as Wigner-
Ville and Choi-Williams, as well as adaptive time-frequency transforms in the context of micro-
Doppler signature analysis. Order statistics combined with time-frequency representation is
used by Stankovic et al. [5, 6] to separate micro-Doppler returns from the rigid body returns.
In this work, a linear combination of order statistics called ‘L-statistics’ is used to differentiate
non-stationary micro-Doppler signals from the relatively stationary rigid body return.

Time-frequency analysis has long been a useful tool for many applications across different
fields, such as blind separation of speech signals [7], machinery fault diagnosis [8] and radar
imaging and signal analysis [9]. The aim is to obtain a representation domain in which the
signal components of interest can be efficiently represented. For example, an infinitely long
and periodic signal can be represented by a number of sinusoids of varying coefficients in
the Fourier domain – the classical Fourier series. For signals with finite time support, the
conventional Fourier transform is inadequate, and other time-frequency analysis tools such as
the short-time Fourier transform (STFT), Gabor transform [10] and the wavelet transform [11]
have been devised for their representation.

A time-frequency filter and Viterbi algorithm based method was proposed by Li et al. [12] for
separation of micro-Doppler signals. The Viterbi algorithm was applied in the time-frequency
domain to estimate instantaneous frequencies of signal components, and then a time-frequency
filter was designed to filter and synthesise the micro-Doppler signals of interest. For helicopter
radar returns the fast rotating blades give rise to broad instantaneous Doppler frequency terms
in the signal; a single instantaneous frequency cannot be defined.

In addition to the Fourier based analysis, a number of different basis functions for time-
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frequency analysis have been proposed for micro-Doppler signal representation. In [13] the
radar returns are decomposed into stationary and non-stationary components using the Fourier-
Bessel transform in conjunction with the fractional Fourier transform, and time-frequency
analysis was used to estimate the target’s motion parameters after the extraction of micro-
Doppler features. An adaptive chirplet representation was used in [14], and the signals from
the body and the rotating parts were then separated in the chirplet parameter space. A set of
basis functions with sinusoidal phase was proposed in [15], given the fact that micro-Doppler
signals from rotating point scatterers are sinusoidal in the time-frequency domain.

Statistical signal separation techniques have been proposed for micro-Doppler signal separa-
tion. Singular spectrum analysis is a non-parametric spectral estimation technique based on
the singular value decomposition, and has been applied to extract micro-Doppler effects in
ISAR imaging [16] and SAR imaging in clutter [17]. Going beyond the second order statistics,
techniques for micro-Doppler feature extraction based on spatio-temporal independent com-
ponent analysis have been proposed in [18]. Empirical mode decomposition which decomposes
radar returns into intrinsic mode functions was applied to extract micro-Doppler signals and
generate focused ISAR images [19, 20]. In [21], empirical mode decomposition followed by
the Hilbert spectrum was applied to analyse micro-Doppler signatures, and superior results
to Cohens class of time-frequency distributions have been obtained.

More recently, compressive sensing based signal separation algorithms were proposed to de-
compose multi-component signals [22, 23, 24, 25, 26, 27]. In [22], for the separation of micro-
Doppler and main body signatures, compressive sensing signal reconstruction was used to
recover stationary narrowband signals in the presence of strong non-stationary signals. Over-
lapping points in the time-frequency domain are cast as missing samples, and l1 minimisation
was used to reconstruct the signal using sparsity of the stationary components in the frequency
domain. A similar compressive sensing based technique for linear FM signals, which are as-
sociated with accelerating targets, is presented in [23], where the local polynomial Fourier
transform is applied to demodulate chirp signals before signal reconstruction.

A number of image processing methods have also been applied to the problem of micro-Doppler
signal separation. The Hough transform which has been widely used for line segment detection,
and the extended Hough transform have been used for micro-Doppler signal analysis [28, 29,
30]. In these methods, the detection of the straight lines and the sinusoids in the time-
frequency image are assumed to correspond to the non-rotating parts and the rotating parts,
respectively. But returns from helicopter rotor blades also exhibit straight lines in the time-
frequency plane with a 90 degree slope, thus the above assumption does not hold for micro-
Doppler of helicopter returns. The Radon transform, which can transform a sinusoidal phase
modulated signal (a rotating point scatterer in time-frequency plane) into a single point, was
also applied in micro-Doppler analysis [5]. These types of pattern recognition algorithms work
effectively only when the returns from the rotating parts are significant compared to the body
return, which is often not the case.

Most related to the current report is a simple 4-level decomposition with db1 wavelet based
method proposed by Thayaparan et al. [31] for analysing radar micro-Doppler signatures from
experimental helicopter and human data. Their decomposition method is not really designed
to fully represent the ‘deep level’ information from micro-Doppler radar signatures. Other
methods for micro-Doppler signal analysis and separation include complex local mean decom-
position [32] and a delay-line technique [33], which was used for clutter cancellation.

2
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The general limitations of these known techniques are as follows.

• Most methods remove micro-Doppler components to generate a well focused image of the
rigid body of a target, rather than extracting useful information from the micro-Doppler
signals for further processing.

• Most of the above methods have only been tested for simple cases of simulated and
real data, assuming a rotating point scatterer model which generates a sinusoidal phase
modulated signal. For example, a sinusoidal phase modulated signal (non-stationary
micro-Doppler signal) with multiple sinusoids (stationary rigid body signal), or an air-
craft return with JEM lines; to our knowledge, the complexity of returns from a blade
structure as in the case of helicopter returns has not been adequately studied.

• Most importantly, the existing methods separate the rigid body component from micro-
Doppler components, but do not decompose micro-Doppler returns into individual sub-
components. For example, current methods cannot be used to separate radar returns of
the tail rotor and the main rotor of a helicopter.

1.1 Micro-Doppler signal representation for a helicopter

Consider the received signal from a helicopter target in flight as a complex time series x[n],
with components

x[n] = xMB[n] + xTB[n] + xB[n] + r[n], (1)

where n denotes the slow-time sample index, xMB,xTB represent the returns from main and
tail rotor blades respectively, xB is the return from the helicopter body, and r[n] represents
other interference components such as clutter and noise. A typical spectrogram of real heli-
copter data is presented in Figure 1, showing the components of x[n].

Figure 1: Spectrogram of the original Ku-band radar signal (HH polarisation) showing the dif-
ferent components: main blades, tail blades, and low Doppler frequency components
associated with the rotor hub and helicopter body.

It should be noted in Figure 1 that the Doppler characteristics of both the main and tail blades
are quite similar, however the main blades usually exhibit broader Doppler bandwidths and
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a stronger magnitude (for HH return) due to its physical structure (longer blade length), and
the aspect angle viewed by the radar. At broad beam aspects, the main blades’ Doppler
bandwidths are generally broader than those of the tail blades. On the other hand, closer
to the ‘top-down’ or ‘bottom-up’ aspects, the Doppler bandwidths of the tail rotor may be
broader.

One of the aims of this work is to extract the components from main rotor blades out of the
composite signal, followed by a similar extraction for the tail blades using a representation
domain in which the signal components of interest can be efficiently represented. Although the
components in the composite signal overlap in both time and frequency, they exhibit different
temporal and Doppler characteristics. The main and the tail rotor blades can be observed
to have broad and different Doppler and temporal characteristics (highly non-stationary)
compared to the hub and body components (relatively stationary).

To achieve micro-Doppler signal separation for this application, the use of wavelet transforms
to represent the main and tail blade signals in the time-scale domain is applied and then these
components are extracted using sparse signal optimisation techniques.

Generally, a wavelet transform maps a signal in the time domain into the time-scale domain
which gives the frequency information of the original signal and the times at which these
frequency components occur; time and frequency (or scale) are two fundamental properties
to describe a signal. To describe complex and diverse signals in the real world, there is also
an important third property: resonance [34]. The resonance of an isolated pulse is quantified
by its ‘Q-factor’, defined as the ratio of its centre frequency fc to its bandwidth BW , i.e.,
Q = fc/BW , and is directly proportional to the number of cycles (or oscillations) in the
pulse.

If we only consider the frequency aspect of the wavelet transform, it can be viewed as a
sub-band decomposition, such that each frequency sub-band has the same Q-factor, being
approximately 1.5 for the conventional dyadic discrete wavelet transform [11, 35]. Recently,
with the advances in computational power and the need for representing various classes of
signals, research in developing new families of discrete wavelets, termed as Rational-Dilation
Wavelet Transforms (RADWT), as discussed in [36, 37, 38, 39, 40, 41], allows more flexibility
in specifying the Q factor. The driving motivation is to design the Q factor that best suits
the signal class of interest.

The tunable Q wavelet transform (TQWT) first discussed by Selesnick in [38] is among the
newly developed RADWTs and is chosen for our application since it is simple to implement
and offers great flexibility through tuning of the Q-factor and other parameters (the trans-
form parameters), which are critical for the sparse representation of the signals of different
frequency and temporal characteristics. Other work to apply the TQWT to a radar problem
was on sea clutter mitigation [42], in which resonance-based signal separation was exploited
to separate the sea clutter and the target components using a sparse optimisation routine
with the dictionary being constructed based on TQWTs.

The algorithms presented in this report based on wavelet transforms and sparse signal repre-
sentation will address the above shortcomings, and can be used to extract different levels of
target information, such as the returns from main rotor blades, and tail rotor blades, as well
as being robust to sea clutter interference. These signal separation algorithms are presented
in Section 2. The results for simulated and real experimental data are presented in Sections 3

4
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and 4, respectively. In Section 5, the performance of the algorithm in a clutter contaminated
environment is analysed. Parameter selection, computational cost of the algorithms, and algo-
rithm performance for lower carrier frequencies are discussed in Section 6. Finally, Section 7
presents some concluding remarks.

2 Analysis Methods

The algorithm proposed in this report is based on the TQWT and sparse signal optimisation
techniques for the separation of the main and tail rotor blades from the body return, in both
clutter free and clutter contaminated environments. The success of the techniques is based
on the use of TQWT to efficiently represent the signal components of different Doppler and
temporal characteristics. Once the suitable TQWTs are chosen for different components in
the composite signal, they are separated by solving an l1-optimisation problem with l2 least
square error, known as the basis pursuit denoising (BPD) problem.

The TQWTs offer a great flexibility in specifying the transform parameters and are efficient
to implement numerically; it is indeed a suitable tool to analyse the signal components of
interest, xMB and xTB in (1). Sparsity of the representation is then optimised to effectively
separate out the components. This section describes the TQWT in some detail.

2.1 Tunable Q Wavelet Transform

The three adjustable parameters of the TQWT are: the Q-factor, the redundancy parameter
r, and the number of subbands J .

The redundancy parameter r characterises the degree of ‘over-completeness’ of the wavelet
transform. Consider a discrete signal x represented by an N × 1 column vector. A non-
redundant wavelet transform has r = 1, and the transform matrix Φ and its inverse Ψ are
N ×N matrices. In such cases, a given signal x can be uniquely represented in the wavelet
domain, as

x = Ψw, (2)

where w is a coefficient vector of length N . This denotes a linear equation system of N
variables and N equations with a unique solution w for the invertible matrix Ψ.

When Ψ is a N ×M matrix, with M > N , there are more wavelet functions in Ψ representing
the signal than the length of the signal; the redundancy factor is greater than unity, r =
M/N > 1. For a given signal x, a solution for (2) is not unique, which can give a flexibility to
optimise for the representation sparsity since M is the number of ‘atoms’ in the ‘dictionary’
Ψ. The transform matrix Φ of size M ×N is composed of the analysis wavelet functions, and
may be symbolically written as

Φ =
[
ψ1,0; . . . ;ψ1,k0−1; ψ2,0; . . . ;ψ2,k1−1; . . . ; ψJ,0; . . . ;ψJ,kJ−1−1; φ0; . . . ;φL−1

]
, (3)

where ψj,k are row vectors representing the mother wavelet functions; a semicolon designates
‘next row’; subscripts j and k here represent the scale (frequency) and time translation indices;
and the φl functions, with l = 0, . . . , L− 1, are the ‘father wavelet’ functions. There are J + 1
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(a) The sub-band decomposition (sub-bands 1 to 6)

(b) Mother wavelet functions (sub-bands 1 to 6)

(c) Sub-band decomposition (sub-bands 1 to 20)

(d) Mother wavelet functions (sub-bands 10 to 20)

Figure 2: Examples of TQWT designs: (a) and (b) for Q = 2, J = 6 and r = 2; (c) and (d)
for Q = 6, J = 20 and r = 3.

6
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scales, or sub-bands, including the lowest frequency band spanned by the father wavelets. The
scale index j ranges over j = 1, 2, . . . , J , while the ranges for k depends on a sub-band.

For example, the mother wavelet functions ψ1,k with k = 0, . . . , k0 − 1 represents k0 time-
translated versions of a mother wavelet function at the first (coarsest) scale, and these mother
wavelet functions will all have the same highest band-pass frequency response. The next
mother wavelet function k1 with scale index j = 2 occupies the next highest band-pass fre-
quency region, and so on. The bandwidth of each of these frequency sub-bands are determined
by the single predefined Q factor described earlier. We also have

k0 + k1 + · · ·+ kJ−1 + L = M,

i.e., the combined number of all mother and father wavelet functions, and all their time
translations, is equal to M .

Figure 2(a) illustrates the sub-band decomposition associated with a TQWT with Q = 2, J =
6, r = 2, showing the 6 mother wavelet functions and 1 father wavelet function. The wavelet
transform can be regarded as a sub-band decomposition operation in the frequency domain,
where each of the mother and father wavelet functions and the corresponding time translations
occupy one frequency sub-band. Figure 2(b) shows the time-domain mother wavelet functions
corresponding to sub-bands 1 to 6. Here, ψ1,j represents the mother wavelet function cor-
responding to sub-band 1. The time index j represents the time translations of the mother
wavelet, all of which have the same high frequency response as shown in Figure 2(a).

Similarly, the functions ψ2,j , · · · , ψ6,j are associated with the lower sub-bands, from 2 to
6. The father wavelet functions φl is associated with the low-pass spectrum as indicated in
Figure 2(a). Altogether they span the frequency spectrum of the signal.

Figures 2(c) and 2(d) illustrate another TQWT example with a higher Q factor: Q = 6,
while J = 20, r = 3. The higher Q value results in a denser sub-band decomposition and
more oscillatory characteristics of the wavelet functions in the time-domain shown in Figure
2(d).

In summary, the following comments can be made about the TQWT:

1. The Q factor characterises the resonance level of all wavelet functions;

2. The number of sub-bands, J , is designed such that the set of all mother wavelets and
the father wavelet completely span the frequency spectrum of the signal of interest. The
lowest band around zero frequency is occupied by the father wavelet;

3. The redundancy parameter r, describes the degree of over-completeness of the wavelets;

4. When M > N , Φ is generally not an invertible matrix, Ψ is a pseudo-inverse (or left-
inverse) of Φ; these matrices are computed only implicitly as part of the filter design for
the TQWT.

2.1.1 Implementation of the TQWT

The implementation of the TQWT is fully described in the paper by Selesnick [38]. One of
the key advantages of the TQWT is the matrices Φ and Ψ do not need to be constructed
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Figure 3: Perfect reconstruction filter bank structure for TQWT design, including the anal-
ysis low-pass and high-pass filters H(ω), G(ω) and associated synthesis filters
H∗(ω), G∗(ω). LPS and HPS are low and high pass rescaling operations, in fre-
quency domain, with β = 2/(Q + 1);α = 1 − β/r. Perfect reconstruction means
X = Y .

explicitly a priori, giving a significant saving in computing memory. Instead, the forward and
inverse transforms can be implemented using an iterative strategy, where the input signal x, its
respective Fourier transform X(ω), the transform parameters Q, r, J , and the corresponding
wavelet coefficients w are computed iteratively, and vice versa.

For convenience of reference, the key points from the work in [38] on TQWT design and
implementation are summarised below (using Figure 3 and 4, to aide the discussion):

1. Similar to other discrete wavelet transform designs, TQWT is designed based on a
perfect reconstruction multi-rate filter bank structure, illustrated in Figure 3, for input
X being equal to output Y . Therefore, for a predefined Q-factor and r parameters,
the transform is implemented using a perfect reconstruction over-sampled filter bank
with real-valued sampling factors; H(ω), G(ω) are the analysis low-pass and high-pass
filters, H∗(ω), G∗(ω) are the synthesis low-pass and high-pass filters, respectively, where
the responses |H(ω)| = |H∗(ω)| and |G(ω)| = |G∗(ω)|. This effectively means that the
frequency spectrum of the synthesis father and mother wavelets (those that construct
the inverse transform Ψ) are identical to the analysis counterparts which constitute the
forward transform matrix Φ.

It should be noted that this filter bank structure is implemented in the frequency domain,
i.e., the input and output signals, X and Y and the filters H,G,H∗(ω), G∗(ω) are all
designed in the frequency domain. LPS and HPS refer to the low pass and high pass
re-scaling operations in the frequency domain where β = 2/(Q+ 1) and α = 1− β/r.

2. The forward transform is implemented by iteratively applying a multi-rate two-channel
filter bank on the low-pass channel. Figure 4 illustrates the iterated filter bank structure
where the output of the low-pass channel is input into a second two-channel filter bank
and so on. This is repeated J times for a J-stage wavelet transform or J levels of
decomposition. In this figure, H(ω) and G(ω) represent the analysis low-pass and high-
pass filters, respectively.

3. At each level of decomposition, the sampling frequency of the decomposed signal is
changed accordingly - the low-pass and high-pass components have sampling rates of
αfs and βfs respectively, with fs being the sampling rate of the input signal (α, β < 1).
In this scheme, the low-pass and high-pass filters H,G can be considered as the anti-

8
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Figure 4: Iterated filter bank implementation for computing the forward TQWT, given the
pre-designed iterated low-pass and high-pass filters H(ω), G(ω), respectively.

aliasing filters1. Thus, they are designed such that the filtering operation by H together
with the low-pass scaling (LPS) preserves the low-frequency content of the signal, and
the filtering operation by G together with the high-pass scaling (HPS) preserves the
high frequency content of the signal (terms near Nyquist) with the new sampling rates
at each channel being set as mentioned earlier.

4. Figure 5 shows the normalised frequency responses of H0(ω) and G0(ω) illustrating the
behaviour of the first-stage filter bank (J = 1). The wavelet transform (or sub-band
decomposition) is computed such that for a given input signal X, the high-pass sub-
band output W0 represents the wavelet coefficients corresponding to high frequency
terms from αfs/2 to Nyquist frequency (fs/2) of the input signal.

V0 contains the low-pass sub-band coefficients from DC to approximately αfs/2 as shown
in Figure 5. From here we can repeat this logic for the second stage, where the signal
with low-pass frequency response, V0, is input into the second stage. Since the sampling
rate at this stage is αfs, the filters H,G are redefined to have the frequency response
from [0, α2fs] (corresponding to V1) and [α2fs, αfs] (corresponding toW1), respectively.
Again, the output of this stage V1 will be fed into the next stage of decomposition.

Note that W1 (the output of the second stage high-pass filtering) contains the band-pass
sub-band coefficients with respect to the input X(ω).

5. Using the definitions of α and β and Figure 5 as a visual guide, the values of Q and
r affect the wavelet decomposition in the following way: (a) The Q-factor determines
the frequency extent of H(ω), with large values giving a narrower response, (b) the r-
parameter determines α or the filter ‘roll-off’ amount. For larger values of r, the roll-off
is more gradual and so H(ω) and G(ω) have a greater overlap leading to redundant
coefficients.

The wavelet coefficient vector is the concatenation of sub-band vectors

wT =
[
DFT−1{VJ−1} DFT−1{WJ−1} · · · DFT−1{W0}

]
,

where DFT−1{.} represents the inverse discrete Fourier transform operation. If the input
signal X is the DFT of an impulse function δ[n], the level 1 decomposition result, W0, will
represent the frequency response at sub-band 1 as similar to that shown in Figure 2(a).

1Reducing of sampling frequency will result in aliasing, the filters H,G can act as the anti-aliasing filter
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(a) Analysis low-pass filter

(b) Analysis high-pass filter

Figure 5: The normalised frequency responses of H0(ω) and G0(ω) illustrating the behavior
of the first-stage filter bank (J = 1).

The inverse Fourier transform of W0 will correspond to the mother wavelet ψ1,0 in expression
(3). If X is the DFT of delayed impulse δ[n − 1], W0 will represent the response at the
same frequency band as the previous, however the associated time domain DFT−1{W0} will
correspond to the time translated version of ψ1,0 becoming ψ1,1 as described in (3).

Similarly, the second level of decomposition of an input impulse signal, DFT−1{W1}, will give
the ψ2,0 mother wavelet function. The father wavelet function φ0 is given by DFT−1{VJ−1},
given that an impulse input signal is used.

2.2 Basis Pursuit Denoising with the TQWT

Consider again a complex signal x, represented by a N × 1 column vector. If a linear opera-
tion

WT : CN×1 → CM×1, for M > N,

represented by the M × N matrix Φ, is said to sparsely represent the signal x, then the
corresponding coefficient vector

w := WT{x}

should be sparse, i.e., having a small number of coefficients with high magnitude whilst the
remaining coefficients are small and negligible.

10
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The technique of Basis Pursuit Denoising (BPD, or BPDN), first discussed in [43] provides
a good platform for the optimisation of the sparse representation of the signal x in the new
space WT . The BPD technique is formulated as:

min
w

{
‖x−Ψw‖22 + θ‖λ�w‖1

}
, (4)

where ‖·‖1 , ‖·‖2 represent the l1 and l2 norms, respectively2; � represents the Hadamard
(element-wise) multiplication, λ is the compensation vector for sub-band energy gained at
each decomposition level due to the scale dependent norm of the TQWT. This means each
wavelet coefficient is compensated by the energy of the corresponding wavelet function through
the elements of the λ vector,

λj =
1

‖ψj,∗‖2
, j = 1, 2, . . . , J. (5)

with ψj,∗ being a row vector representing the discrete wavelet function (at any time transla-
tion) as described in (3). The parameter θ represents the weight which determines the desired
energy ratio between the l1 sparsity component and least square error term (regularisation
factor).

The BPD problem described in (4) is a convex problem, and a fast iterative algorithm to
solve this problem has been reported by Afonso et al. [44], known as the ‘Split Augmented
Lagrangian Shrinkage Algorithm’ (SALSA). For completeness, the algorithm is summarised
in Algorithm 1.

Algorithm 1 SALSA Algorithm

1: procedure Basis Pursuit Denoising w =BPD(x,Φ,Ψ, θ,λ, µ)
2: Initialisation T = θλ/(2µ),u = 0, C = 1/(µ+ 1), d = 0,w = Φx
3: for iteration k = 1 : P do
4: u = SOFT(w + d,T )− d
5: d = Φ(Cx− CΨu)
6: w = d+ u
7: end for
8: end procedure
9: procedure Soft Thresholding y =soft(x,T )

10: for each element index k of vector x do
11: yk = max(|xk| − Tk, 0)
12: yk = ykxk/(yk + Tk)
13: end for
14: end procedure

For our processing, the µ parameter is a user-defined step-size in the optimisation set to µ = 1
and P = 50 is the number of iterations.

The redundancy parameter r featured in the wavelet transform TQWT allows a non-uniqueness
of the solution to represent the signal x in the wavelet domain. The optimisation expressed
by (4) yields a way to optimise the solution for the sparse representation of x in the WT
domain, i.e., the minimum l1 norm ‖w‖1, whilst minimising the least square error given by
‖x−Ψw‖22.

2l1 norm of a vector w is given by
∑

k |w[k]|, whilst the l2 norm is computed as (
∑

k |w[k]|2)1/2
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2.3 Proposed Algorithm for Rotor Blade Separation

Our proposed scheme for separating the components consists of three successive processing
stages: 1) pre-processing; 2) main rotor processing, and 3) tail rotor processing. Processing
for the main rotor is carried out first since the main rotor returns are usually stronger than
the tail rotor return.

Stage 1 – Pre-Processing

1. The original signal xorg is Doppler shifted to remove any component of translational
motion of the helicopter. The helicopter body and low-frequency hub components are
attenuated by a 256-tap high-pass FIR filter with a cut-off frequency of PRF/50. The
signal after filtering is denoted by x.

2. The signal is decomposed into the positive and negative Doppler frequency components
xp and xn. The processing is applicable to both main and tail rotors, and is described
in detail as follows.

Suppose X = DFT {x} denotes the discrete Fourier transform of time-domain signal
x. Then, one can write

X = [Xn Xp]

where Xn and Xp are the Fourier coefficients of the negative and positive frequency
components. The time signal becomes x = xn + xp, with the components given simply
as

xn = DFT −1{[0 Xn]}, xp = DFT −1{[Xp 0]},

Here, DFT −1{.} represents the inverse discrete Fourier transform. This processing
applies to both main and tail rotors, and the components will be processed separately
in the next stages.

Stages 2 - Main Rotor Blade Processing
Two sub-stages are involved:
Stage 2.1:

1.1 For the given set of (Q, r, J), compute the compensation vector λ for the wavelets ψj

for all scales, based on (5). Set the weighting parameter θ which has been empirically
found to range between 1 and 2.

1.2 Apply the BPD algorithm as described in Section 2.2 and the SALSA Algorithm to
solve the optimisation problem of (4).

This yields the weight vector output denoted as ŵBPD, and is given by

ŵBPD = arg min
w

{
‖y −Ψw‖22 + θ‖λ�w‖1

}
, (6)

where y may be xn, or xp, or their residual (remnant) component.

Stage 2.2:
Apply the Reweighted l1 Minimisation algorithm, as shown in Algorithm 2, to re-evaluate
the coefficients of the wavelets determined in stage 2.1. The weight vector output from this
processing is denoted as wreweighted.

12
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Stages 3 - Tail Rotor Blade Processing
The residual signal after main rotor blade processing is input to Stage 3. The same processing
is used to separate the tail rotor blade component, denoted as Stage 3.1 and Stage 3.2, except
that the wavelet parameters are tuned differently for this component. The residual signal
after Stage 3 is expected to consist mostly of remaining components from the body (including
the rotor hubs) and interference, as expressed by equation (1).

Algorithm 2 Re-Weighted l1 Minimisation

1: Construct the re-weighted matrix W as a diagonal matrix with diagonal values given by
ŵBPD, as

W{k,k} =
1

|ŵBPD[k]|+ ε
, k = 1, . . . ,M ; (7)

W ← W

max{|W |}
; (normalisation) (8)

2: Solve the re-weighted BPD algorithm

ŵreweighted = arg min
w

{
‖y −Ψw‖22 + θ‖Wλ�w‖1

}
, (9)

where the other parameters are as defined in (6).
3: The reconstructed signal after the re-evaluation is given by Ψ ŵreweighted.

The following points should be noted of the proposed algorithm.

1. The positive and negative Doppler frequency components of the composite signal are
processed separately to mitigate artifacts caused by mirror image effects of the signal
frequency spectrum. For example, if there exists a strong component of interest on one
side of the spectrum that is picked up by the algorithm, the nature of the TQWT is such
that a smaller magnitude mirror image component of opposite frequency may also be
extracted. Processing only a one-sided spectrum at a time ensures that any component
formed on the other side of the spectrum is an artifact caused by mirror effects, which
can then be filtered out.

2. The refinement processing with the Reweighted l1 Minimisation has been noted to sig-
nificantly enhance the performance of the algorithm by moving the l1 solution toward
an ideal and sparse l0 solution, where only a few coefficients are non-zero.

3. Parameter θ is empirically chosen based on the relative energy between the component
of interest and the other components which are treated as interference for this extrac-
tion problem. It starts from 2 for a normalised input, reducing by 0.1 until all blade
components are extracted by sub-stages 2.1 and 3.1.

4. Parameter ε is a few orders of magnitude smaller compared to ŵBPD; it serves as a
means to avoid division by zero.
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Figure 6: The synthetic sinusoid signals: Top panels represent the sustained oscillation (left)
and its corresponding narrow band spectrum (right); middle panels illustrate the
non-sustained (left) and corresponding broad band spectrum (right), the noisy com-
posite signal is shown in the bottom panels, time domain (left) and magnitude spec-
trum (right).

2.4 An example for technique demonstration

To demonstrate the use the proposed algorithm for signal separation exploiting the sparsity
of the components, the following example is considered. Let the signal x be an additive
composition of a broadband component xb (non-sustained oscillation with low Q resonance),
a narrowband component xn (sustained oscillation with highQ resonance) and white Gaussian
noise n, given by

x = xb + xn + n. (10)

The time domain signals and their associated magnitude spectra are illustrated in Figure 6
for individual components and the composite signal. The key challenges for the separation
of these components are signal components overlap in both time and frequency, and no prior
knowledge of the timing of appearance of the components is available. Thus, conventional
filtering methods cannot be applied.

After applying the proposed signal separation method, we successfully extract the broadband
component xb as shown in Figure 7. The TQWT and its associated dictionary matrix Φ
are chosen such that the broadband spectral characteristics can be sparsely represented. This
example demonstrates how the proposed technique can be used to extract wideband impulsive

14
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Figure 7: The broad band component extraction using the proposed approach. Top panel
illustrates the real part of the original (solid blue) and the extracted signals (dashed
red) whilst bottom panels are for the associated magnitude spectrum (same color
scheme applied).

signal (similar to radar return from a helicopter blade) when mixed with narrowband sustained
signals (similar to radar returns from helicopter body and hub components).

3 Demonstration with Simulated Data

The algorithm proposed in Section 2.3 is first demonstrated with simulated data of a hovering
helicopter (no translational motion). The target model consists of three components: main
rotor blades, tail rotor blades, and the rotor hub and body. The main rotor is made up of
3 radial wires, each having a length of 5 m, and rotating at 390 RPM. The blade tip is also
modelled using a point scatterer model to give the blade tip a return over a small angular
extent. The tail rotor is modelled with 2 radial wires rotating at 3000 RPM, each having
a length of 0.9 m. The main rotor hub is modelled simply as a band-limited (±2.5 kHz)
Gaussian noise source, while a large ‘DC term’ represents the helicopter body return.

The radar is modelled as a pulse-Doppler radar operating at 9.5 GHz (X-band) and using a
PRF of 66.7 kHz, collecting a single sample per pulse (without any pulse compression) at the
range gate where the target is isolated. Dwell time on the target is 150 ms in duration, which
is approximately a complete rotation of the main rotor. Figure 8 shows the spectrograms of
the signals before and after the first stage of pre-processing.

It should be noted that although this section is dedicated to processing simulated data, the
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(a) Before pre-processing

(b) After pre-processing

Figure 8: Stage 1 - pre-processing of simulated data at X-band.

wavelet parameters used and any modification to the processing stages that occur, are in
preparation for real data which is presented in the next section. References to this fact are
highlighted in the subsections below.

3.1 Main Rotor Blade Separation

For the main rotor blade signal separation, we apply Stage 2 of the algorithm. The TQWT
wavelet coefficients are determined using the following parameters: Q = 6, r = 25, and J = 40.
A discussion on the selection of these parameters is reserved for Section 3.4.

Let x̂MB be the complex signal representing the estimated and extracted component produced
by the main rotor processing, with the residual signal expressible as

xres = x− x̂MB.

The spectrograms of the extracted main rotor component and the residual signal immediately
after the Stage 2.1 of the algorithm, are shown in Figure 9(a) and Figure 9(b) respectively.
Note that the processing at this stage correctly extracts the wavelet components but not their

16
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(a) Extracted main blade component after stage 2.1 processing

(b) Residual signal after stage 2.1.

(c) Extracted component after stage 2.2 processing

(d) Residual signal after stage 2.2.

Figure 9: Simulated results in Stage 2 of the algorithm, for main rotor processing.
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(a) Time signal of the first receding main blade

(b) Spectrum of the first receding main blade

Figure 10: Original and reconstructed signals after stage 2.2 of (a) the first receding main
blade in time domain; and (b) the same signals in the frequency domain.

coefficients. As a result, only part of the signal energy is extracted, with a significant amount of
energy from the main blades still observable in the residual signal shown in Figure 9(b).

In Stage 2.2 of the algorithm, the application of the Re-weighted l1 Minimisation re-evaluates
the weight vector, which fully extracts the signal components of interest thus minimising
errors that could have propagated, or even been amplified, further down the processing chain.
The improved extracted components are shown in Figure 9(c), which in this case are stronger
than that in Figure 9(a). Figure 9(d) shows the spectrogram of the residual signal after Stage
2.2, where only the tail blade components and some of the energy of the main blade tips
remain.

To further highlight the effectiveness of the proposed algorithm, data from around the first
receding blade flash (negative Doppler) is presented in Figure 10. Figure 10(a) shows a
comparison between the original and the final extracted component in the time domain, while
Figure 10(b) shows the same signal but in the frequency domain. Excellent agreement is
clearly observable in both time and frequency domains. A similar performance has been
observed for approaching blade flashes (positive Doppler) as well.
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3.2 Tail Rotor Blade Separation

For the tail rotor blade signal separation, we apply Stage 3 of the algorithm. The residual
signal output from the main rotor processing is the input to the tail rotor processing; the
wavelet coefficients are estimated using a different set of wavelet parameters: Q = 1.2, r = 20,
and J = 17. Again, a discussion on the selection of these parameters is reserved for Section
3.4.

Unlike the main blade and low frequency rotor hub components, the tail blade components
are usually significantly weaker in magnitude. For real data, bright specular returns in the
low-frequency part of the main rotor spectrum interferes with the TQWT processing for tail
rotor blade extraction. To overcome this, the algorithm in Stage 3.1 is modified to allow
the bandwidth of the father wavelet to be user-defined so that strong specular components
from the main rotor hub are spanned by the sub-band of the father wavelet. Then, to avoid
capturing these components, the compensation factor for the father wavelet coefficient, λJ+1,
is set to a large value – 1000 times that determined in the SALSA algorithm. This effectively
means that components in the low-pass sub-band of the father wavelet will not be extracted
unless they exceed 60 dB above components in other sub-bands.

Here, the user-defined father wavelet bandwidth has a frequency extent in the range ±6 kHz,
which is set to a value larger than the hub frequency extent to allow for filter roll-off. Using
this requirement on the father wavelet, the J parameter is calculated3 with Q = 1.2 and
r = 20.

Although this section is dedicated to simulated data and bright specular returns in the rotor
hub do not exist, the same processing for both real and simulated data is used to maintain
consistency and so that the modification of the father wavelet compensation factor can be
tested using the ideal simulated case.

The result of the tail blade extraction after Stage 3.2 optimisation, and after the modifica-
tion to the compensation vector, is shown in Figure 11(b). For convenience, the signal in
Figure 9(d) is re-shown in Figure 11(a).

The full energy of the tail blade components have been extracted as compared to that in
Figure 11(a). It shows that the algorithm is capable of separating tail rotor blade returns
from hub and main body, after main rotor blade signal separation. The residual signal is
shown in Figure 11(c) showing the absence of main and tail rotor blade returns. The residual
signal only shows the hub components and the return from main blade tips.

Again, the extracted signal is observed in the time and frequency domain. The extracted
time-domain magnitude of the first observed tail blade is shown in Figure 12(a), and the
corresponding Doppler spectrum is shown in Figure 12(b).

Good extraction of the tail blades can be observed in which only the component of interest is
extracted to approximate the original signal whilst rejecting the other components. One can
argue that since the hubs and the tail blades components are well separated in the frequency
domain, linear band-pass filtering can be used to extract the tail signal. However, if linear
filtering is used, unwanted components, such as noise and other residue, exist in the pass-band
region of the filter at times other than when the tail rotor blades occur. In Figure 11(b), the

3An automated algorithm is implemented to compute J given (Q, r) and the low-pass spectrum spread.
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(a) Spectrogram after main blade extraction (tail return only)

(b) Extracted tail components after 2nd stage processing

(c) Residual signal after tail extraction

Figure 11: Simulated results in Stage 3 of the algorithm, for tail rotor processing.
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(a) Time-domain signals of the first tail flash

(b) Frequency-domain signals of the first tail flash

Figure 12: Comparison of the input and reconstructed signals in Stage 3, for the tail rotor
processing.

extracted signal is observed to have energy only at the times the tail blades are viewed by the
radar whilst rejecting energy at other times.

In Figure 12(b), it should be noted that the low frequency terms near DC in the spectrum of the
separated tail signal was not effectively extracted due to the modification of the compensation
factor λJ+1 as discussed earlier. The father wavelet bandwidth can be reduced to enable the
extraction of more low-pass information from the tail blades, however a trade-off needs to
be made since this can potentially result in a failure to extract all tail rotor components or
extraction of unwanted hub components.

3.3 Main Rotor Blade Separation Under Strong Interference

In this section, we demonstrate a case where noise and helicopter hub returns have a high
intensity, thus interference components and main blade signal are overlapped in both time
and frequency. This example shows the robustness of the proposed technique to in-band in-
terference and its ability to extract original blade signals with high fidelity features. Figure 13
shows the spectrogram of the original signal before and after pre-processing stages. After ap-
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(a) Before pre-processing

(b) After pre-processing

Figure 13: Stage 1 - pre-processing of simulated data at X-band with high level interference.

plying stage 1 and 2 processing, the main blade signal is extracted and the results are shown
in Figure 14. Even in the presence of strong interference, the proposed method is capable of
accurately extracting the main blade returns as shown in Figure 14(a).

The time and frequency domain plots of the first receding and approaching blades are shown in
Figures 15 and 16, respectively. Each plot shows original main blade signal, composite signal,
and the extracted main blade signal using the proposed method. In the case of receding
blade case (Figure 15(a)), we notice destructive interference where blade return is reduced
and its time-domain characteristics have been changed (notice that single peak is split into
two sub-peaks). The extracted main blade signal recover the time-domain characteristics of
the original signal and more closely matched with the original simulated signal. Obtaining the
extracted signal directly in time-domain from the composite signal would not work in this case
as time-domain features of the original blade signal have been significantly changed during
the composition. From the application point of view, it is important that both time-domain
and frequency-domain features are preserved in the extracted signal. Figure 15(b) shows the
same comparison in the frequency domain. Low frequency interference components are not
present in the extracted signal and also a flatter plateau is observable which is closely matched
to the original main blade response.

Figure 16(a) shows the results for the approaching blade case in time domain. Here, the
original blade signal is constructively interfered, and composite signal peak has more energy

22
UNCLASSIFIED



UNCLASSIFIED
DST-Group–RR–0436

(a) Extracted main blade component in the presence of strong interference

(b) Remnant signal after extraction in the presence of strong interference

Figure 14: Simulated results for the main blade signal extraction under strong interference.

than that of present in original blade signal. Again, the extracted blade signal using the
proposed method is a closer match to the original blade signal compared the composite signal.
Figure 16(b) shows the frequency domain comparison. Again, low frequency interference is
avoided during the extraction and a similar frequency response to the original blade signal is
obtained.

3.4 Optimum Choices of Parameters for the TQWT

For the main rotor blade return, it is desirable to use optimum transform parameters such
that the representation of the main blade component in the new domain is sparsest compared
to the other components. This was achieved by constructing the TQWT transform matrix Φ
for a range of Q-factor values and finding the optimised solutions ŵmain, ŵtail, ŵhub for each
Q factor. It was found that a value of 6 for the Q-factor gave the sparsest representation for
the given r and J parameters.

The redundancy factor r was empirically fixed at 25 to provide sufficient degree of freedom for
the optimisation and J was selected such that the spectral bandwidth of the father wavelet
spans ±18 kHz, which is approximately the Doppler extent of the main rotor blades in this
simulated example, resulting in a calculated value of J = 40. The sub-band decomposition of
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(a) Results for first receding blade in time domain in the presence of strong interference

(b) Results for first receding blade in frequency domain in the presence of strong interfer-
ence

Figure 15: Results for the first receding blade under strong interference.

the TQWTs associated with this set of Q, r, J parameters is shown in Figure 17(a), plotted
for positive Doppler frequencies only.

The following steps were taken to compute J , given Q, r and the spectral bandwidth of the
father wavelet required, denoted here by B3dB:

1. Compute low-pass filter H(ω) and scaling factor α (refer to Figure 4).

2. Compute VJ (J = 0 for the first iteration) for an input signal X(ω) where X(ω) is the
DFT of the impulse signal x[n] = δ[n].

3. Compute 3dB bandwidth of VJ , denoted by B3dB,J .

4. If B3dB,J > B3dB, return to Step 2 with J = J + 1.

To show sparsity characteristics under the TQWT of the various components of the helicopter
signal, Figure 18 is a plot of the magnitudes of ŵmain, ŵtail, ŵhub, normalised and sorted
in descending order. The main blade coefficients are most sparse compared to the other
components, with the first 20 coefficients representing most of its signal energy. A similar
characteristic can be seen for the tail rotor. The hub component is the least sparse.

However, it should be noted that the main blade returns are stronger in magnitude compared
to the tail returns, which is not reflected in the plot in Figure 18 since the weights are
normalised. This effectively means that for the same sparsity level, the main blade component
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(a) Results for first approaching blade in time domain in the presence of strong interference

(b) Results for first approaching blade in frequency domain in the presence of strong
interference

Figure 16: Results for the first approaching blade under strong interference.

can be expected to be more dominant compared to the tail counterpart. These selected TQWT
parameters were used throughout the report for both simulated and real data for main rotor
signal separation.

The transform parameters for the tail rotor were chosen so that the following conditions were
met: (1) as discussed in Section 3.2, the father wavelet sub-band was designed to occupy the
±6 kHz part of the spectrum, which is a user-defined parameter; (2) The mother wavelets
in the band-pass region of the spectrum is designed to have a broad bandwidth to capture
the tail component. Accordingly, a low value of 1.2 for the Q-factor was found to be suitable
for the tail rotor processing. Also, setting r = 20 gave sufficient redundancy which led to
a calculated value of J = 17. The sub-band decomposition of the TQWTs associated with
this set of Q, r, J parameters is shown in Figure 17(b). Again, these parameters were used
throughout the report for tail rotor signal separation.
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(a) Main blade, Q=6,r=25 and J=40.

(b) Tail blade processing, Q=1.2,r=20 and J=17.

Figure 17: Sub-band decomposition used in the processing of main and tail rotors

4 Experimental results with real data

The real data used in this report was collected during dedicated helicopter trials held in May
2011. The Defence Science Technology (DST) Group Wandana II van-mounted experimental
pulse Doppler radar was used to illuminate a hovering Squirrel AS350BA helicopter at various
aspect angles ranging from 0 to 180◦ with 0◦ aspect relating to the ‘nose on’ aspect. A photo
of the actual helicopter used for the measurements is shown Figure 19. The Squirrel helicopter
has 3 main rotor blades and 2 tail rotor blades, which rotate at approximate nominal rotation
rates of 394 and 3000 RPM respectively. In this report we use aspect angles of 45◦ and 180◦

which provides data that shows both the main and tail rotor blade returns with adequate
SNR.

The radar collected measurements at carrier frequencies of 9.5 GHz (X-band) and 16.8 GHz
(Ku-band) using a PRF of 66.7 kHz with horizontal polarisation on transmit and receive. A
single sample per pulse was collected at the range bin where helicopter was located with no
pulse compression.
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Figure 18: Sorted wavelet coefficients in descending order for Q = 6, r = 25, J = 40.

Figure 19: Photo of the Squirrel AS350BA (Courtesy of Australian Helicopters Pty Ltd)

4.1 Experimental data at X-band: 45◦ aspect

In this section, we apply the proposed algorithm on the X-band data collected at the aspect
angle of 45◦. The spectrogram of the original signal plotted for one revolution of the main
blade is shown in Figure 20(a). The spectrogram clearly shows the large return from the
helicopter body at 0 Hz (DC), the rotor hub return that has a Doppler frequency extent of
approximately ±3 kHz, the six blade flashes from the three main rotor blades (both positive
and negative Doppler frequencies) and the less dominant blade flashes from the 2-bladed tail
rotor.

We begin with Stage 1 processing where by the rotor hub and body Doppler frequency terms
are filtered out. The high-pass filtered signal is plotted in Figure 20(b). Note that the
spectrograms showing processed results in the sections below are normalised to this pre-
processed signal.

Stage 2 processing is then applied to the pre-processed data. Effective extraction of the main
rotating blades is achieved using the tuned parameters Q, r, J , found based on the simulated
data for the X-band signal.

In Figure 21(a), the spectrogram of extracted signal after Stage 2.2 processing is shown.
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(a) Before pre-processing

(b) After pre-processing

Figure 20: One cycle of Squirrel helicopter data at X-band, 45◦ aspect, in Stage 1.
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(a) Extracted main rotor blade components

(b) Residual signal after main blade extraction

Figure 21: Stage 2 processing – for the main rotor blades – on Squirrel helicopter data, at
X-band, 45◦ aspect.
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The blade energy corresponding to the six blade flashes are effectively extracted in both the
temporal and frequency space. This is seen in the residual signal shown in Figure 21(b).

To further highlight the effectiveness of the blade extraction, the first approaching and the
first receding blade flash is plotted in the time and frequency domains. Both the approaching
and receding blades are presented because the blade will have different scatterering properties
due to the physical construction of the blade and due to the blades aerofoil design.

Figure 22(a) shows a comparison between the original and extracted time-domain signals of
the first approaching main blade, after Stage 2.2 processing. The results show very good cor-
relation between the original and extracted signal in both the shape, main-lobe and side-lobe
structure, and magnitude of the responses. The frequency response of this first approaching
blade flash signal is shown in Figure 22(b). Again, the correlation between the original and
extracted signal is very good. The Doppler extent and response shape of the extracted signal
is comparable to the original signal, especially the frequency plateau corresponding to the
blade response, in the Doppler frequency range between 1 and 12 kHz.

Similarly, Figure 22(c) shows a comparison between the original and extracted time-domain
signals of the first receding main blade, after second stage processing. This zoomed in plot
highlights how well the BPD processing works on this signal in extracting the main blade
response. Again, the frequency response of the receding blade signal, in Figure 22(d), shows
the blade plateau region and the correlation between the original and extracted signals.

Stage 3 processing is applied to extract the tail rotor blade return from the residual signal
after the main rotor blade extraction. This tail blade only spectrogram is re-shown in Figure
23(a) to provide a visual reference. The tail component can be observed on both sides of
the frequency spectrum with each blade producing a flash at the same time, due to the even
parity of the tail rotor.

To highlight the inadequacy of using linear filtering for this problem, there are strong un-
wanted components that fall in the same frequency band as the tail blades signal, (approxi-
mately [5, 12] kHz, and [−12,−5] kHz), that interfere with the processing because they are not
associated with the tail rotor blade, but may belong to residual energy from the main blade
(in particular the main blade tip) or other scattering phenomenon. Hence, linear filtering
cannot be used, as these components would be extracted with the tail blade signal.

By using the proposed technique the signal from the tail blade can be extracted, after Stage 3.2
processing and modifying the father wavelet compensation factor, as seen in Figure 23(b). The
extracted signal extracts the tail rotor blade signal for the correct Doppler extent and temporal
spaces. The residual signal after tail blade extraction is seen in Figure 23(c). When compared
to the spectrogram after main blade extraction (Figure 23(a)) the residual spectrogram shows
the absence of tail blade energy.

Again, to fully show the effectiveness of the proposed technique, the signal from the first tail
rotor blade is plotted in the time and frequency domains. Figure 24(a) shows the comparison
between the original and extracted tail blade signal in the time-domain. The two signals are
comparable with temporal features extracted correctly. Figure 24(b) shows the comparison
between the original and extracted tail blade signal in the frequency-domain. The shape and
magnitude of the original and extracted signal is comparable.

Effective separation of both main and tail rotor blades can be achieved for this data set using
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(a) Time-domain signals of the first approaching main blade

(b) The same signals as above, in frequency domain

(c) Time-domain signals of the first receding main blade

(d) The same signals as in (c), in frequency domain

Figure 22: Comparison of the original and extracted signals for the first main rotor blade, at
X-band, 45◦ aspect, Squirrel helicopter data.
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(a) Signal after the main rotor blade extraction

(b) Spectrogram of the extracted tail rotor components

(c) The residual signal after the tail rotor extraction

Figure 23: Stage 3 processing – for the tail rotor blades – on Squirrel helicopter data, at
X-band, 45◦ aspect.
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(a) Time-domain signals of the first tail rotor blade flash

(b) The same signals as above, in frequency domain

Figure 24: Comparison of the original and extracted signals for the first tail rotor blade, at
X-band, 45◦ aspect, Squirrel helicopter data.
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the same parameters used for simulated data discussed in Section 3.2.

4.2 Experimental data at X-band: 180◦ aspect

Consider the data set with operating frequency at X-band and aspect angle of 180◦. The
difference in aspect angle results in radar returns having different intensity components as
compared to the previous data set, especially in the tail rotor component, reflected in the
spectrogram in Figure 25(a).

The magnitude of the tail component is significantly different compared to that of the 45◦

aspect angle (see Figure 20(b)) as the approaching tail component is now more dominant
compared to the receding one. Applying Stage 2 processing for main rotor extraction, and
using the parameters, Q = 6, r = 25, J = 40, the separated main rotor and the residual signals
are shown in Figure 25. Even in the presence of more dominant tail rotor returns, the main
blade extraction is effective.

The time domain and Doppler plots of the first approaching and receding main blades of the
original and extracted signals are shown in Figure 26. Effective extraction of the main blades
can be obtained for this data set using the same parameters used previously.

As before, the signal after main blade extraction is used as the input to Stage 3, tail blade
processing, using TQWT parameters Q = 1.2, r = 20, J = 17. The full tail blades energy is
correctly extracted after Stage 3.2 processing, noting that for this data set the approaching tail
blade (positive Doppler) has a stronger magnitude than the receding one (negative Doppler).
This is captured in Figure 27(b) which shows the spectrogram of the extracted tail blade
component. Figure 27(c) shows the spectrogram of the residual signal.

The signal from the first tail rotor blade is plotted in the time and frequency domains, in
Figure 28(a) showing the comparison between the original and extracted tail blade signal in
the time-domain. Again, the two signals are comparable with temporal features extracted
correctly, but with some variation in magnitude. Figure 28(b) shows the comparison between
the original and extracted tail blade signal in the frequency-domain.

Since the same TQWT parameters were used for all X-band data sets (simulated, 45◦ and
180◦ aspects), signal separation for both main and tail blades was achievable using the same
wavelet parameters Q, r, J, θ. This suggests that provided the same operational frequency and
PRF is being used, which ensures the Doppler and temporal characteristic don’t change, the
algorithm is not sensitive to changes in aspect angle.
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(a) The pre-processed signal as input to Stage 2 processing

(b) The extracted main blade components

(c) The residual signal

Figure 25: Stage 2 processing – for the main rotor blades – on Squirrel helicopter data, at
X-band, 180◦ aspect.
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(a) Time-domain signals of the first approaching main blade

(b) The same signals as in (a), in frequency domain

(c) Time-domain signals of the first receding main blade

(d) The same signals as in (c), in frequency domain

Figure 26: Comparison of the original and extracted signals for the first main rotor blade, at
X-band, 180◦ aspect.
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(a) The input signal after main blade extraction

(b) The extracted tail blade components

(c) The residual signal after tail blade extraction

Figure 27: Stage 3 processing – for the tail rotor blades – on Squirrel helicopter data, at
X-band, 180◦ aspect.
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(a) Time-domain signal of the first tail blade flash

(b) The same signal as bove, in frequency domain

Figure 28: Comparison of the original and extracted signals for the first tail rotor blade, 180◦

aspect.
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4.3 Experimental data at Ku-band: nose aspect

In this section we present results of the proposed technique applied to Ku-band radar data
(16.8 GHz) measured at an aspect angle of 0◦. At this higher operational frequency (shorter
wavelength), finer details of the rotor blade are observed resulting in stronger specular returns,
due to the nature of the backscattering phenomena. Furthermore, broadening in both time
and frequency-domains for the main and tail rotor blades has changed significantly compared
to the X-band data.

The spectrogram of the Ku-band data after Stage 1 preprocessing is shown in Figure 29(a).
The Doppler spread of the main rotor component extends to approximately 25 kHz compared
to 15 kHz for the X-band data4. Also, the reflectivity of the tail blade flash is not constant
for all frequencies, with a large return from approximately 10 kHz to 15 kHz but reducing in
strength beyond this frequency.

The same TQWT and algorithm parameters as used for the X-band data are applied to
this DC filtered signal. The main blades separation after Stage 2.2 processing is shown in
Figure 29(b). The blade is successfully extracted in both time and frequency, with the residual
signal spectrogram shown in Figure 29(c).

Figure 30(a) shows a comparison between the original and extracted time-domain signals
of the first approaching main blade, after Stage 2.2 processing for this Ku-band data. The
results show very good correlation between the original and extracted signal in both the shape,
magnitude of the responses and side-lobe structure. This plot also shows that the large flash
response at times 18.3−18.4 ms has a shorter duration in time, compared to the X-band data,
but the flash response over the period of 17− 19.5 ms is still captured, giving good extraction
of the blade flash signal. The frequency response of this first approaching blade flash signal is
shown in Figure 30(b). Similarly, the correlation between the original and extracted signal is
very good, with the Doppler extent and response shape of the extracted signal matching the
original signal very closely.

The time-domain plot of the first receding main blade is shown in Figure 30(c). The plot
highlights how well the processing works on this signal in extracting the main blade response.
Figure 30(d) illustrates the broad and fluctuating Doppler response over the frequency range
−25 to 0 kHz, which is representative of main blade returns at high operational frequencies.
This can potentially be an issue for weaker returns since the algorithm may not treat the
blade as one broad-band component but instead treating them as various components; for
example, one broad-band from −25 to −10 kHz and two separate narrow-band components
at −5 kHz and −2 kHz.

As was shown for the X-band data, the technique is applied to extract the tail rotor blade
return from the residual signal after the main rotor blades extraction. The spectrogram with
the tail blade component only is re-shown in Figure 31(a) for a visual reference. The tail
component can be observed on both sides of the frequency spectrum, but the receding blade
(negative Doppler frequencies) produces a much greater response. In fact, the approaching
tail rotor blade response is comparable to the background noise and is only slightly discernible
to the observer.

4Note that main rotor Doppler extent ratio (25kHz/15kHz) more or less matches the ratio of frequencies
(16.8GHz/9.5GHz)
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(a) The pre-processed signal

(b) The extracted main blade components

(c) The residual signal

Figure 29: Results of Stage 2 processing on Squirrel helicopter data, at Ku-band, nose aspect.

40
UNCLASSIFIED



UNCLASSIFIED
DST-Group–RR–0436

As before, the same TQWT and algorithm parameters as used for the X-band data are applied
to the tail only signal. Figure 31(b) shows the extracted signal after Stage 3.2 processing and
Figure 31(c) shows the residual signal.

The effectiveness of the tail extraction is more clearly seen in Figure 32 where the first tail
rotor blade is plotted in the time and frequency domains. Figure 32(a) shows the compar-
ison between the original and extracted tail blade signal in the time-domain. Figure 32(b)
shows the comparison between the original and extracted tail blade signal in the frequency-
domain. In both cases, the shape and magnitude of the original and extracted signal are
comparable.

Although the extraction of the main and tail rotor is successfully demonstrated at Ku-band,
more work for this operational frequency (and potentially lower frequencies) is needed, where
scattering phenomena plays a more significant role in the time and frequency responses, which
determines the optimal parameters and transform domains for this problem.
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(a) Time-domain signals of the first approaching main blade

(b) The same signals as in (a), in frequency domain

(c) Time-domain signals of the first receding main blade

(d) The same signals as in (c), in frequency domain

Figure 30: Signal comparison for the first approaching and receding main blade, at Ku-band
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(a) Spectrogram after main blade extraction

(b) Extracted tail signal

(c) Residual signal

Figure 31: Results of Stage 3 processing on Squirrel helicopter data, at Ku-band
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(a) Time-domain signals of the first tail blade flash

(b) The same signals in (a), in frequency domain

Figure 32: Comparison of signals in Stage 3 processing of the first tail blade flash signal at
Ku-band.
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5 Signal separation with sea clutter interference

This section discusses the extraction of the main rotor blades in the presence of sea clutter.
In many practical scenarios of interest the radar may operate in the environments where sea
clutter is present, thus the proposed algorithm needs to be robust to such clutter interfer-
ence.

Simulated sea clutter at sea state 2 using the GIT clutter model [45] is generated using the
Generic Phased Array Radar Model (GPARM) version 2015a developed by the DST Group
for similar radar and waveform parameters as in the X-band real data: carrier frequency of
9.5 GHz, 1µs long rectangular pulses without waveform coding, PRF of 67.1 kHz, 64 pulse
CPIs, and 0.1µs sampling intervals. Clutter data in a single representative range bin was used
for analysis.

The simulated sea clutter is then added to the real X-band data with aspect angle of 45
degrees, which was described in Section 4, at various signal to clutter ratio (SCR) levels. If
the real data is denoted as xsignal and the simulated sea clutter data as xclutter, the additive
signal is given by

y = xsignal + xclutter, (11)

and is used to test the proposed algorithms at two different SCR levels, where

SCRtotal = 10 log10

∑
n |xsignal[n]|2∑
n |xclutter[n]|2

(dB).

The total signal to clutter ratio defined here is computed for the composite signal of the
helicopter which includes all components: the helicopter body, the hub, and the blades. Since
the signal of interest is only the main blades component, we also use an SCR defined only for
the main blades, called ‘main blades SCR’, SCRMB, as

SCRMB = 10 log10

∑
n |x̂MB[n]|2∑

n |xclutter[n]|2
,

where x̂MB is computed (i.e. estimated) using the extracted main blades signal after the
separation algorithm is applied.

The strong returns of the sea clutter are concentrated around the low Doppler frequencies
with some leakage to higher frequencies depending on the SCR level. Lower SCR means
stronger sea clutter energy and stronger leakage energy to higher Doppler frequencies. Hence,
the problem can be treated in a manner similar to that of tail rotor extraction with strong
interference relative to the signal components of interest in the low Doppler frequency region
(Stage 3 processing). To accommodate various levels of SCR, the father wavelet was designed
to have a frequency range from −6.5 to 6.5 kHz, and the TQWT parameters are set to
Q = 1.5, r = 10, J = 12.

In the first experiment, the total SCR is set to 10 dB. The original signal and sea clutter
contaminated signal are shown in Figure 33(a) and Figure 33(b), respectively. After Stage
1 processing, the pre-processed signal is shown in Figure 34(a). The extracted main blades
component is shown in Figure 34(b), and the residual signal is shown in Figure 34(c). The
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main blades components have been successfully extracted from clutter and all the clutter
components remain in the residual signal.

The time-domain and associated frequency-domain plots of the extracted first receding and
approaching blades are shown in Figure 35. From the time-domain plots it is clear that the
algorithm is capable of correctly extracting the main blade components. Here, the main blades
SCR was estimated to be −4.4 dB.

(a) Original helicopter data

(b) Original data with additive clutter at SCRtotal = 10 dB

Figure 33: Data with and without simulated clutter, at X-band, 45◦ aspect, SCRtotal = 10 dB.
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(a) The pre-processed signal

(b) The extracted main blade signal

(c) The residual signal

Figure 34: Stage 2 processing of sea clutter contaminated data, at X-band, 45◦ aspect and
SCRtotal = 10 dB.
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Now, we repeat the above analysis with total SCR set to -11.7 dB. This is the minimum SCR
required for the algorithm to effectively extract the main blade components. The spectrograms
of the clutter contaminated signal and the extracted main blade component are shown in
Figures 36(a) and 36(b), respectively. When the total SCR is −11.7 dB, there are significant
clutter transients and the main blade components are hardly distinguishable from the sea
clutter components, illustrated in Figure 36(a). In spite of this, the proposed algorithm is
capable of recovering the main blade signal from the strong clutter background as shown in
Figure 36(b). This shows the robustness of the method even at low signal levels.

The first approaching and receding main blades signals are shown in Figure 37 in time and
frequency domains. Even though, the clutter transients have larger magnitude than the main
blade signal, as shown in the time-domain plots, the proposed method correctly identifies and
extracts the signal of interest, and the extracted signal is very similar to the original clutter-
free signal. Also, clutter peaks closely overlap with the main blade returns as can be seen
from Figures 37(a) and 37(c). Note that strong clutter returns are present within 0.5 ms of
blade returns. The proposed technique can still extract the blade signals without extracting
the clutter components. A simple time domain method where a time window around the
blade flash is used, assuming time occurrence of the blade flash can be correctly identified, to
extract the blade signal will not work, as such an extraction will certainly be contaminated
by the clutter returns.

The total SCR of -11.7 dB is the smallest signal to clutter ratio where the proposed approach
can still be effective for main rotor blades separation, corresponding to a main blades SCR of
−25 dB (when only main blade signal is considered). The ability of the algorithm to extract
components of interest at such a low SCR is promising and demonstrates the robustness of
the method. However, the GIT clutter model used to generate simulated clutter data does
not emulate clutter Doppler spectrum due to correlation, thus more experiments with real
clutter data should be done for verification.

We also compare the extracted blade signals in clutter environment with the same extracted
signals from section 4 where no clutter was present. The comparison results are shown in
Figure . Main blade extraction in clutter was done at SC of -11.7 dB. The extracted signals
with and without clutter are a close match to each other demonstrating the robustness of the
proposed technique to significant clutter levels.

The tail rotor blade extraction in clutter depends on the aspect angle of the helicopter target.
It was found that a minimum total SCR of 10 dB is required for effective tail blades separation
using the same parameters of Q,R, J, θ as for the clutter free scenario. The ‘tail blades SCR’
of tail rotor blades to clutter in this case is -17 dB. Again, this minimum SCR is highly
dependent on the target aspect to the radar.
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(a) Time-domain signals of the first approaching main blade

(b) The same signals as in (a), in frequency domain

(c) Time-domain signals of the first receding main blade

(d) The same signals as in (c), frequency domain

Figure 35: Comparison of signals for the first main blade, SCRtotal = 10 dB at X-band and
45◦ aspect.
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(a) The pre-processed signal

(b) The extracted main blade signal

(c) The residual signal

Figure 36: Stage 2 processing, X-band, 45◦ aspect, SCRtotal = −11.7 dB.
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(a) Time-domain signals of the first approaching main blade

(b) The same signals in (a), in frequency domain

(c) Time-domain signals of the first receding main blade

(d) The same signals as in (c), frequency domain

Figure 37: Comparison of signals in Stage 2, with SCRtotal = −11.7 dB, at X-band and 45◦

aspect.
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(a) First approaching main blade

(b) First receding main blade

Figure 38: Comparison of extracted blade signal with and without simulated clutter added for
approaching and receding main blades.

52
UNCLASSIFIED



UNCLASSIFIED
DST-Group–RR–0436

6 Remarks and Discussion

The selection of Q, r, J parameters for TQWT construction is critical for the proposed algo-
rithm in obtaining a sparse solution. The optimal set of parameters will depend on the physical
properties of the blades such as length and rotational speed, as well as radar and waveform
parameters such as operational frequency and PRF. Currently, parameters are tuned with
this prior knowledge for a given data set. Future work is warranted to develop an automated
search algorithm for estimating a good set of values for these parameters using Doppler and
temporal characteristics of initial blade flashes as training data.

For a long CPI as in the application of interest, the computation of the linear and inverse
transforms of the input vector x will be a dominant factor. As discussed, the forward and
the inverse transform matrices Φ and Ψ are not explicitly constructed in the algorithm, thus
saving a great amount of storage and computation. The linear and inverse transforms are
implemented by an iterative filter bank operation, discussed in section 2.1.1. For an input
signal x of N samples, the computational cost of TQWT is O(rN log2N) as discussed in
[38]. The BPD problem is solved using the SALSA algorithm as stated in algorithm 1, which
requires P iterations to converge (the algorithm usually converges within 50 iterations), each
of which involves one forward and one inverse TQWT. Hence, the computational cost of the
proposed algorithm is in the order of O(PrN log2N).

The proposed signal separation algorithm was run on an Intel (R) Core i7 at 3.6 GHz with
8 GB memory for 150 ms CPIs, and the measured processing time was approximately 29
seconds for the parameters Q = 6, r = 25, J = 40. When compared to the existing work,
which uses orthogonal matching pursuit (OMP) for the same problem as discussed in [46], the
proposed method requires only 40 atoms to construct the dictionary compared to over 1000
atoms in the OMP approach. Also, it should be noted that in the OMP the search dictionary
needs to be explicitly constructed.

In this report, the proposed signal separation algorithms were tested on X-band and Ku-band
radar returns. The algorithms can be equally applicable to lower operational frequencies
such as L-band, though further testing with radar data at those frequencies is warranted.
Since the proposed algorithm exploits the differences in Doppler and temporal characteristics
of different signal components, the algorithm may need to be tuned differently to take into
account those characteristics for helicopter returns at low frequencies. More resolution in
Doppler (high PRF and long CPIs) may be required to capture tail blade returns at low
operating frequencies.

7 Conclusion

In this report, algorithms for effective separation into the main and tail rotor blades of the
complex helicopter radar returns are demonstrated. The algorithms are based on the methods
of sparse signal optimisation with the tunable Q wavelet transform, exploiting the inherent
differences in the temporal and Doppler characteristics of the signal components of interest.
The demonstration used both simulated and real data at X and Ku-bands.

Promising performance of the novel algorithms has been shown for a hovering Squirrel he-
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licopter, with no significant translational motion and maneuvering and under clutter-free
conditions. Partial results have been achieved under a simulated sea clutter environment;
effective main blades separation at a signal to clutter ratio as low as −25 dB. A similar
demonstration of the algorithms under real clutter and real target maneuvering remains to
be done.

The proposed algorithms are found to be very effective for signal separation with relatively
fast computation times thanks to the nature of implementation of the algorithm, particularly
in solving the basis pursuit denoising problem, and in the computation of the forward and
inverse wavelet transforms without matrix inversion. However, some parameter tuning was
required using prior knowledge of the Doppler extent of the component of interest during the
pre-processing stage. Future work is currently planned to automate the parameter tuning
step.
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